Автоматизированное рабочее место исследования авиационных электроприводов

A. С. Бочаров, email: bocharov_a_s@mail.ru В. В. Дармограев И. В. Пищулин

ВУНЦ ВВС «ВВВА им. проф. Н.Е. Жуковского и Ю.А. Гагарина» (г. Воронеж)

Аннотация. Аннотация. В статье рассматривается один из подходов к построению автоматизированного рабочего места, позволяющего обучающимся самостоятельно изучить особенности построения и функционирования современных авиационных электроприводов, их систем управления. В качестве программы построения графического интерфейса рассматривается программа Microsoft Visual Studio.

Ключевые слова: авиационный электропривод, автоматизированное рабочее место, Simulink.

Введение

В различных отраслях промышленности, науки и техники, в том числе авиации, для производства энергии, и ее использования в разнообразных электромеханизмах широко применяются электромеханические преобразователи – электропривода. Более 90 % всей вырабатываемой электроэнергии получают с помощью электромеханических генераторов, и не менее 60 % этой энергии потребляется электроприводами [1 – 2]. Это позволяет сделать вывод об актуальности изучения и исследования современных электроприводов обучающимися вузов, в том числе и курсантами военных вузов.

1. Постановка задачи исследований

Целью ланной статьи является раскрытие возможностей программы Microsoft Visual Studio [3] для построения автоматизированного рабочего места (APM) по исследованию авиационного электропривода (АЭП).

Для создания интерактивной оболочки виртуального автоматизированного рабочего места по исследованию АЭП различных типов на основе моделей, созданных в пакете SimPowerSystem

[©] Бочаров А. С., Пищулин И.В., Дармограев В.В., 2022

программы Simulink [4], воспользуемся возможностями программы Microsoft Visual Studio.

2. Решение задачи исследований

Нередко программе Matlab возникает необходимость в многократного запуска файла программы при других, измененных параметрах решаемой задачи. Возникает неудобство: в постоянном редактировании исходного текста программы и повторном или очередном ее запуске. При этом важен механизм управления переменными, который бы обеспечивал удобный интерфейс между программой и пользователем. При решении других задач могут возникнуть трудности с визуализацией какого-либо процесса, то есть некоторая переменная изменяться динамически в процессе решения поставленной задачи. Все эти и другие трудности, возможно, решить при использовании графического интерфейса, сформированного с помощью программы Microsoft Visual Studio [3].

Visual Studio представляет собой интегрированную среду разработки (Integrated Development Environment, IDE). IDE – это набор инструментов разработчика программного обеспечения, собранный в составе единого приложения и облегчающий труд программиста при написании приложений.

В состав Visual Studio входит целый набор типовых проектов, из которых каждый разработчик может подобрать именно то, что ему в данный момент требуется. Среда программирования автоматически создаст «скелет» будущего приложения, причем этот код можно немедленно скомпилировать и запустить на исполнение.

Как и любой процесс проектирования, процесс построения графического интерфейса пользователя можно разбить на следующие этапы.

На первом этапе проводиться анализ поставленной задачи и определяется количество и состав элементов управления необходимых для решения задачи.

На втором этапе создается форма графического интерфейса и на ней создаются элементы управления. Здесь же описываются и их свойства.

Задавать расположение и выравнивать элементы на форме описывать их свойства можно «вручную», но для удобства и быстроты используют редактор выравнивания объектов и редактор свойств.

Существует два способа создания формы и элементов управления, а также задания или изменения их свойств:

– использование команды операционной среды программирования Microsoft Visual Studio;

 использование средств панели инструментов и панели элементов – совокупности средств для быстрого создания необходимых элементов управления, кнопок, анимационных ссылок на объекты (гиперссылки), а также необходимого образа программы.

Обобщая вышесказанное, можно сформировать следующий алгоритм создания интерфейса:

1. Произвести запуск программы Microsoft Visual Studio. Создать проект, предварительно выбрав язык программирования, название и расположение проекта. Предпочтительно к данному APM выберем язык программирования Visual Basic. Далее получим форму для интерфейса и файл программного редактирования проекта, как указано на рис. 1. Кнопка 1 предназначена для создания нового приложения Windows Forms, в окне 2 задается имя приложения, а кнопка 3 позволяет выбрать расположение созданного приложения.

Puc. 1. Создание проекта в Microsoft Visual Studio с необходимым языком программирования

2. В появившемся окне графического редактирования произвести необходимую настройку формы интерфейса, с использованием стандартных элементов управления в режиме конструирования. Используя вкладку «Панель элементов» и «Свойства элемента», добавить кнопки и надписи в виде макетов, после выполнить редактирование интерфейса Form1.vb, присвоив ему необходимое название, размер окна, фоновое изображение и другие свойства, по усмотрению разработчика АРМ, как показано на рис. 2. При нажатии на окно 1 происходит открытие интерфейса АРМ в режиме конструктор,

окно 2 представляет внешний вид интерфейса, в строке 3 задается название окна интерфейса АРМ.

Рис. 2. Редактирование макета интерфейса АРМ

3. Проводим настройку элементов управления и программируем их на выполнение необходимых задач. В АРМ основным элементом управления является кнопка «Button», при нажатии на которую будет происходить запуск необходимых файлов. Для этого двойным нажатием на кнопку. вызываем панель программирования и залаём необходимую например: System.Diagnostics.Process.Start команду, («Портфолио APM.pdf»), где в скобках указывается название файла (в кавычках с расширением файла), необходимого для запуска при нажатии на кнопку. Данные файлы помещаются в папку Projects\ Windows Application1 \ Windows Application1 \ bin \ Debug, как показано на рис. 3.

4. Аналогично выполняем настройку всех элементов управления графического интерфейса, по усмотрению разработчика АРМ.

5. По завершении редактирования выполняем отладку, запуск программы и при удовлетворении результата, сохраняем её. Готовый результат программирования будет находиться в папке Projects, а в папке Debug – файл запуска графического интерфейса APM с расширением «WindowsApplication1.exe».

Form 1 vit . e. X. Form1 vit (Koursmarton)	* Oferseters served * I
* form1 - fff (O6ъявления)	- 0.00 h-20 file 0.45
Public Class Formi	+ Of concentrate optimized in page (Drife w)
Private Sub PictureBox1_Click(sender As Object, e As EventArgs)	GI Peurove 'elektr' (npoextor: 1) (iii) elektr
End Sub	My Project
Private Sub RectangleShapel_Click(sender As Object, e As EventArgs)	□ 3db146d7.gif
End Sub	D App.config
	La Formi de Presidente
Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click System.Diagnostics.Process.Start("hopronno APM.pdf") End Sub	
Private Sub Button3 Click(sender As Object, e As EventAres) Mandles Button3.Click	
System.Diagnostics.Process.Start("8.5.pdf") End Sub	Свойства 🗸 🖗
Private Sub Buttond_Click(sender As Object, e As EventArgs) Handles Button4.Click System.Diagnostics.Process.Start("Townensee mempocers.pdf") End Sub	20) 9a 🖉
Private Sub Button5_Click(sender As Object, e As EventArgs) Mandles Button5.Click System.Diagnostics.Process.Start("SAMI.pdf") End Sub	
Private Sub Buttoné_Click(sender As Object, e As EventArgs) Handles Buttoné.Click System.Diagnostics.Process.Start("IM-perynamop.pdf") End Sub	
Private Sub Button7 Click(sender As Object, e As EventArgs) Mandles Button7.Click	*

Рис. 3. Настройка кнопок для интерфейса АРМ

Используя возможности графического интерфейса пользователя, созданного в программе Microsoft Visual Studio, и подготовленные в программе Simulink модели исследования электроприводов, разработано АРМ по исследованию АЭП, структура которого изображена на рис. 4.

Рис. 4. Графический интерфейс АРМ по исследованию авиационных электроприводов

На интерактивной заставке размещается восемь активных кнопок:

1. «Применение нейросетей в задачах управления» – общие сведения о нейросетях и их применении в исследовании систем управления электро-механическими системами.

2. «ПИ-регулятор в системе управления электропривода» – в данном документе представлено описание работы с имитационной моделью АЭП с ПИ-регулятором в системе управления [5].

3. «Нейрорегулятор в системе управления электропривода» – в данном документе представлено описание работы с имитационной моделью АЭП с нейрорегулятором в системе управления.

4. «Каталог авиационных электроприводов» – в данном документе представлены схемы и технические характеристики современных АЭП ВС.

5. «Описание имитационной модели электропривода» – в данном документе описывается примерная методика исследования АЭП с различными регуляторами.

6. «Моделирование электропривода в Simulink» – приводится учебное пособие по моделированию различных типов АЭП с описанием их исследований.

7. «Simulink-модель» – интерактивная кнопка для запуска программной среды исследований АЭП с различными регуляторами в системе управления.

8. «О программе» – в данном документе общие сведения о программе, ее предназначение и основные технические требования.

Рабочее место представляет собой персональный компьютер с имеющимся программным обеспечением – системой Matlab, программами Microsoft Word 2010, Microsoft Visual Studio 2010, AdobeAcrobat 8.0 и с установленными файлами – лабораторными работами на основе имитационных моделей для исследования АЭП, учебной документацией.

Для запуска программы необходимо в папке Release (путь: elektr=> =>bin=> Debug) запустить файл «elektr.exe». В открывшемся окне выбрать интересующую справочную информацию, либо запустить Simulink-модель АЭП.

При наведении курсора на соответствующие активные кнопки и нажатии на левую кнопку мыши активируется та программа или тот объект, который связан с ней.

Нажатие кнопок вызова моделей АЭП различных типов, запускает соответствующие модели, структура которых позволяет проводить всесторонние исследования АЭП и изменять их параметры.

Заключение

Таким образом, описанная в работе структура АРМ по исследованию АЭП, позволит создать базу лабораторных исследований по дисциплине «Электрифицированное оборудование воздушных судов» и проводить весь спектр необходимых исследований различных типов АЭП, ограничиваясь только числом ПЭВМ, на которых будет установлена данная программа.

Список литературы

1. Электрооборудование летательных аппаратов. Учебник для вузов. В 2 томах / под ред. С.А. Грузкова. Том 2. Элементы и системы электрооборудования – приемники электрической энергии. – М.: Издательство МЭИ, 2008. – 552 с.

2. Электромеханические системы: учебн. пособие для вузов / Б.Р. Липай, А.Н. Соломин, П.А. Тыричев; под редакцией С.И. Маслова. 2-е изд., стер. – М.: Издательский дом МЭИ, 2011. – 351 с.

3. Самоучитель Microsoft Visual Studio 2010. – СПб.: БХВ-Петербург, 2011. – 464 с.

4. Герман-Галкин, С.Г. МАТLAB&Simulink. Проектирование мехатронных систем на ПК. – СПб.: КОРОНА-Век, 2008. – 368 с.

5. Бочаров А.С., Горлов А.Э., Пищулин И.В. Анализ возможностей применения искусственных нейронных систем в задачах управления авиационным электроприводом / Актуальные вопросы исследований в авионике: теория, обслуживание, разработки: сб. тезисов докл. VI Международной научно-практической конференции «АВИАТОР», Воронеж, 14-15 февраля 2019 г. – Воронеж: ВУНЦ ВВС «ВВА», 2019. – С. 10 – 13.